Science

#Peel-apart surfaces drive transistors to the ledge

#Peel-apart surfaces drive transistors to the ledge

KAUST researchers are developing alternative approaches to TMD fabrication using surface templates to direct single-crystal growth. Credit: 2020 KAUST

When the team exposed Ga2O3 surfaces to a mix of molybdenum and sulfur gas, they observed that TMD nanoribbons crystallized lengthwise along the ledges with structures that were practically defect free. Microscopy experiments and theoretical models revealed that the ledge atoms had unique energetic features that enabled aligned nucleation to form single-crystal nanoribbons. “For decades, scientists have sought to grow 2-D single-crystal semiconductors on insulators, and this work demonstrates that controlling the ledges of the substrate is the key,” says Tung.
Intriguingly, the nanoribbons could be pulled off and transferred to other substrates without damaging them. To explore potential applications of the ledge-directed growth technology, the international group joined together to design a transistor capable of incorporating nanoribbons from the Ga2O3 template. Electronic measurements showed the new transistor could operate at high speeds and had amplification factors similar to TMD materials produced through more labor-intensive techniques.
“The nanoribbons grow along the ledges using weak physical interactions to stay in place, meaning that no chemical bonds form between the TMD and the underlying Ga2O3 substrate,” notes Aljarb. “This unique feature enables us to transfer the nanoribbons onto foreign substrates for many applications, ranging from transistors, sensors, artificial muscles and atomically thin photovoltaics.”



More information:
Areej Aljarb et al, Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides, Nature Materials (2020). DOI: 10.1038/s41563-020-0795-4

Citation:
Peel-apart surfaces drive transistors to the ledge (2020, September 8)
retrieved 8 September 2020
from https://phys.org/news/2020-09-peel-apart-surfaces-transistors-ledge.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

If you want to read more Like this articles, you can visit our Science category.

if you want to watch Movies or Tv Shows go to Dizi.BuradaBiliyorum.Com for forums sites go to Forum.BuradaBiliyorum.Com

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close

Please allow ads on our site

Please consider supporting us by disabling your ad blocker!