Technology

#Workplace AI will get hella boring before it becomes life-changing

#Workplace AI will get hella boring before it becomes life-changing

This article is part of our series that explores the business of artificial intelligence.

Digital technologies, and at their forefront artificial intelligence, are triggering fundamental shifts in society, politics, education, economy, and other fundamental aspects of life. These changes provide opportunities for unprecedented growth across different sectors of the economy. But at the same time, they entail challenges that organizations must overcome before they can tap into their full potential.

In a recent talk at an online conference organized by Stanford Human-Centered Artificial Intelligence (HAI), Stanford professor Erik Brynjolfsson discussed some of these opportunities and challenges.

Brynjolfsson, who directs Stanford’s Digital Economy Lab, believes that in the coming decade, the use of artificial intelligence will be much more widespread than it is today. But its adoption will also face a period of lull, also known as the J-curve.

“There’s a growing gap between what the technology is capable of and what it is already doing versus how we are responding to that,” Brynjolfsson says. “And that’s where a lot of our society’s biggest challenges and problems and some of our biggest opportunities lie.”

Machine learning and higher productivity

random vectors


According to Brynjolfsson, the next decade will see significantly higher productivity thanks to a wave of powerful technologies—especially machine learning—that are finding their way into every computing device and application.

Advances in computer vision have been tremendous, especially in areas such as image recognition and medical imaging. Talking to phones, watches, and smart speakers has become commonplace thanks to advances in natural language processing and speech recognition. Product recommendation, ad placement, insurance underwriting, loan approval, and many other applications have benefited immensely from advances in machine learning.

In many areas, machine learning is reducing costs and accelerating production. For example, the application of large language models in programming can help software developers become much more productive and achieve more in less time.

In other areas, machine learning can help create applications that did not exist before. For example, generative deep learning models are creating new applications for arts, music, and other creative work. In areas such as online shopping, advances in machine learning can create major shifts in business models, such as moving from “shopping-then-shipping” to “shipping-then-shopping.”

The lockdowns and urgency caused by the covid-19 pandemic accelerated the adoption of these technologies in different sectors, including remote work tools, robotic process automation, powered drug research, and factory automation.

“The pandemic has been horrific in so many ways, but another thing it’s done is it’s accelerated the digitization of the economy, compressing in about 20 weeks what would have taken maybe 20 years of digitization,” Brynjolfsson says. “We’ve all invested in technologies that are allowing us to adapt to a more digital world. We’re not going to stay as remote as we are now, but we’re not going all the way back either. And that increased digitization of business processes and skills compresses the timeframe for us to adopt these new ways of working and ultimately drive higher productivity.”

The J-curve

modern factory building and wireless communication network

The productivity potential of machine learning technologies has one big caveat.

“Historically, when these new technologies become available, they don’t immediately translate into productivity growth. Often there’s a period where productivity declines, where there’s a lull,” Brynjolfsson says. “And the reason there’s this lull is that you need to reinvent your organizations, you need to develop new business processes.”

Brynjolfsson calls this the “Productivity J-Curve” and has documented it in a paper published in the American Economic Journal: Macroeconomics. Basically, the great potential caused by new general-purpose technologies like the steam engine, electricity, and more recently machine learning requires fundamental changes in business processes and workflows, the co-invention of new products and business models, and investment in human capital.

These investments and changes often take several years, and during this period, they don’t yield tangible results. During this phase, the companies are creating “intangible assets,” according to Brynjolfsson. For example, they might be training and reskilling their workforce to employ these new technologies. They might be redesigning their factories or instrumenting them with new sensor technologies to take advantage of machine learning models. They might need to revamp their data infrastructure and create data lakes on which they can train and run ML models.

These efforts might cost millions of dollars (or billions in the case of large corporations) and make no change in the company’s output in the short term. At first glance, it seems that costs are increasing without any return on investment. When these changes reach their turning point, they result in a sudden increase in productivity.

AI J-curve

AI J-curve
Close

Please allow ads on our site

Please consider supporting us by disabling your ad blocker!