#The Conversation: Time is running out to track down the true origin of COVID-19

Table of Contents
“#The Conversation: Time is running out to track down the true origin of COVID-19”
We must not let politics, posturing or finger-pointing distract us from finding out what actually happened so we can stop the next pandemic, says a scientist who’s part of the hunt
SARS-CoV-2 has caused the greatest pandemic of the past 100 years. Understanding its origins is crucial for knowing what happened in late 2019 and for preparing for the next pandemic virus.
These studies take time, planning and cooperation. They must be driven by science—not politics or posturing. The investigation into the origins of SARS-CoV-2 has already taken too long. It has been more than 20 months since the first cases were recognized in Wuhan, China, in December 2019.
An early report from the New York Times suggests the investigation does not conclude whether the spread of the virus resulted from a lab leak, or if it emerged naturally in a spillover from animals to humans.
While a possible lab leak is a line of inquiry (should scientific evidence emerge), it must not distract from where the current evidence tells us we should be directing most of our energy. The more time that passes, the less feasible it will become for experts to determine the biological origins of the virus.
Follow the latest on the virus
Six recommendations
I was one of the experts who visited Wuhan earlier this year as part of the World Health Organization’s investigation into SARS-CoV-2 origins. We found the evidence pointed to the pandemic starting as a result of zoonotic transmission of the virus, meaning a spillover from an animal to humans.
“
While the possibility of a laboratory accident can’t be entirely dismissed, it is highly unlikely.
”
Our inquiry culminated in a report published in March which made a series of recommendations for further work. There is an urgent need to get on with designing studies to support these recommendations.
I and other independent authors of the WHO report have written to plead for this work to be accelerated. Crucial time is disappearing to work through the six priority areas, which include:
- further trace-back studies based on early disease reports;
- SARS-CoV-2-specific antibody surveys in regions with early COVID-19 cases. This is important given a number of countries including Italy, France, Spain and the United Kingdom have often reported inconclusive evidence of early COVID-19 detection;
- trace-back and community surveys of the people involved with the wildlife farms that supplied animals to Wuhan markets;
- risk-targeted surveys of possible animal hosts. This could be either the primary host (such as bats), or secondary hosts or amplifiers;
- detailed risk-factor analyses of pockets of early cases, wherever these have occurred;
- and follow up of any credible new leads.
In May Biden told U.S. intelligence agencies to double their efforts to investigate the origins of the COVID-19 pandemic, including the possibility it emerged from a lab. The ‘lab-leak hypothesis’ had dominated headlines for months.
The biological feasibility of some of these studies is time dependent. SARS-CoV-2 antibodies emerge a week or so after someone has become infected and recovered from the virus, or after being vaccinated.
But we know antibodies decrease over time—so samples collected now from people infected before or around December 2019 may be harder to examine accurately.
Using antibody studies to differentiate between vaccination, natural infection, or even second infection (especially if the initial infection occurred in 2019) in the general population is also problematic.
For example, after natural infection a range of SARS-CoV-2-specific antibodies, such as to the spike protein or nucleoprotein, can be detected for varying lengths of time and in varying concentrations and ability to neutralize the virus.
But depending on the vaccine used, antibodies to the SARS-CoV-2 spike protein may be all that is detected. These, too, drop with time.
There is also a need to have international consensus in the laboratory methods used to detect SARS-CoV-2-specific antibodies. Inconsistency in testing methods has led to arguments about data quality from many locations.
It takes time to come to agreement on laboratory techniques for serological and viral genomic studies, sample access and sharing (including addressing consent and privacy concerns). Securing funding also takes time—so time is not a resource we can waste.
Distance from potential sources
Moreover, many wildlife farms in Wuhan have closed down following the initial outbreak, generally in an unverified manner. And finding human or animal evidence of early coronavirus spillover is increasingly difficult as animals and humans disperse.
Fortunately, some studies can be done now. This includes reviews of early case studies, and blood-donor studies in Wuhan and other cities in China (and anywhere else where there was early detection of viral genomes).
It is important to examine the progress or results of such studies by local and international experts, yet the mechanisms for such scientific cross-examination have not yet been put in place.
New evidence has come forward since our March report. These papers and the WHO report data have been reviewed by scientists independent of the WHO group. They have came to similar conclusions to the WHO report, identifying:
- the host reservoir for SARS-CoV-2 has not been found;
- the key species in China (or elsewhere) may not have been tested;
- and there is substantial scientific evidence supporting a zoonotic origin.
Teetering back and forth
While the possibility of a laboratory accident can’t be entirely dismissed, it is highly unlikely, given the repeated human-animal contact that occurs routinely in the wildlife trade.
Still, the “lab-leak” hypotheses continue to generate media interest over and above the available evidence. These more political discussions further slow the cooperation and agreement needed to progress with the WHO report’s phase two studies.
The World Health Organization has called for a new committee to oversee future origins studies. This is laudable, but there is the risk of further delaying the necessary planning for the already outlined SARS-CoV-2 origins studies.
Dominic Dwyer is a medical virologist and infectious diseases physician, and is director of NSW Health Pathology at Westmead Hospital in Sydney, Australia. He has a clinical and research interest in viral diseases of public health importance, and runs a clinical trials unit in antiviral drugs and vaccines. He has a particular interest in antiviral drug resistance. He is a clinical professor at the Western Medical School, Sydney University.
This commentary was originally published by The Conversation—Why it will soon be too late to find out where the COVID-19 virus originated
Will vaccine skeptics accept the safety of the COVID shot now that the FDA has granted full approval?
Here’s what we know about long COVID—and what we are still trying to figure out
By
Dominic Dwyer
If you liked the article, do not forget to share it with your friends. Follow us on Google News too, click on the star and choose us from your favorites.
For forums sites go to Forum.BuradaBiliyorum.Com
If you want to read more News articles, you can visit our News category.