Technology

#New mysterious ‘fast radio bursts’ reveal secrets of the universe

#New mysterious ‘fast radio bursts’ reveal secrets of the universe

On June 9, 2021, my colleagues and I announced the discovery of 535 fast radio bursts that we detected using the Canadian Hydrogen Intensity Mapping Experiment telescope (CHIME). Detected in 2018 and 2019, these bursts of radio waves last only milliseconds, come from far across the universe, and are enormously powerful – a typical event releases as much energy in a millisecond as the Sun does over many days.

Fast radio bursts are the subject of a young and emerging field in astrophysics, with only around 150 having been found before the release of our new catalog. A lot of work has been done to understand these events, but these cosmic radio bursts remain as mysterious as when they were first discovered in 2007. Simply put: No one knows what exactly produces them.

Every newly captured event is allowing astrophysicists like me to learn more about these weird cosmic phenomena. And, as this is happening, some astronomers have begun to use fast radio bursts as incredibly powerful tools to study the universe itself.

What is a fast radio burst?

The name “fast radio burst” is pretty on the nose. These signals are bursts of radiation in radio frequencies that last for mere milliseconds. A defining property of these bursts is their dispersion: The bursts produce a spectrum of radio waves, and as the waves travel through matter, they spread out – or disperse – with bursts at higher radio frequencies arriving at telescopes earlier than those at lower frequencies.

This dispersion allows researchers to learn about two important things. First, telescopes like CHIME can measure this dispersion to learn about the stuff that radio bursts pass through as they travel toward Earth. For example, some of my colleagues were able to solve a long-standing mystery of missing matter that was scattered across the universe.

Second, by measuring dispersion, astronomers can indirectly determine one of the most important pieces of information in all of astronomy: how far apart things are. The larger the dispersion measure, the more material the signal encountered. So, presumably, passing through more stuff means the burst traveled farther across the universe.

The dispersion measures for fast radio bursts are so large that astronomers know the signals must be coming from outside of the Milky Way galaxy, but these estimates can be inaccurate because of the uneven distribution of matter in the universe. We therefore needed another way of finding distances to the sources of fast radio bursts to avoid assumptions on how matter is distributed and thus unlock a large amount of information and opportunities.

A striking solution to this problem came in 2017, when colleagues of mine were able to pinpoint the exact location of the source of a repeating fast radio burst in the sky. By taking images of repeating bursts on the sky, they found the specific galaxy that the bursts were coming from. Then, using optical telescopes, they determined the distance to this galaxy – approximately 3 billion light-years away from Earth.

Repeating fast radio bursts make it much easier to pinpoint the host galaxies of their sources by giving researchers multiple chances to catch them. While astronomers work to answer important questions about fast radio bursts – What are they? Are repeating bursts different from single bursts? Are they all caused by the same things? – these lingering mysteries don’t stop us from putting them to good use in the meantime.

A large white and black satellite dish shaped like a half-pipe.
Close

Please allow ads on our site

Please consider supporting us by disabling your ad blocker!