Science

#Organocatalyst that controls radical reactions for complex and bulky compound synthesis

#Organocatalyst that controls radical reactions for complex and bulky compound synthesis

Organocatalyst that controls radical reactions for complex and bulky compound synthesis
In catalytic reactions with organocatalysts, it is difficult to control radical reactions. We designed a thiazolium-type N-heterocyclic carbene catalyst having an N-neopentyl group. This catalyst was found to actively control radical reactions and enabled production of more than 35 species of bulky dialkyl ketones from an aliphatic aldehyde and an aliphatic carboxylic acid derivative through a radical relay mechanism. This catalyst is expected to open the way for acceleration of drug discovery research. Credit: Kanazawa University

The key to this success was their finding that the N-neopentyl group of the thiazolium-type N-heterocyclic carbene was effective in the reaction progress, while their study was carried out making full use of organic chemistry and measurement techniques. The bulkiness of the N-neopentyl group was found to be effective not only in promoting a coupling reaction of two different radical species generated in the reaction system but also in suppressing undesirable side reactions.

The present catalytic reaction has the following merits in organic chemical synthesis; 1) bulky molecules can be reaction substrates due to involvement of a highly reactive radical, and 2) the method is excellent in terms of a wide range of functional groups and substrates, since the catalytic reaction can be carried out under mild conditions without the need for metal catalysts or redox reagents. Thus, it is now possible to synthesize more than 35 bulky and complex dialkyl ketones, which was previously very difficult. This enables the synthesis of natural compounds and pharmaceuticals having a dialkyl ketone backbone from an aliphatic aldehyde and an aliphatic carboxylic acid derivative.
In this study, the research group has designed a new organocatalyst that controls radical reactions, which significantly widens the applicability to various substrates. The study is expected to accelerate drug discovery, since it enables synthesis of organic compounds with high added value that used to be nearly impossible to attain. From an academic viewpoint, the study has established design guidelines of organocatalysts that can control radical reactions.



More information:
Yuki Kakeno et al, Direct Synthesis of Dialkyl Ketones from Aliphatic Aldehydes through Radical N-Heterocyclic Carbene Catalysis, ACS Catalysis (2020). DOI: 10.1021/acscatal.0c02849

Citation:
Organocatalyst that controls radical reactions for complex and bulky compound synthesis (2020, August 11)
retrieved 11 August 2020
from https://phys.org/news/2020-08-organocatalyst-radical-reactions-complex-bulky.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

If you want to read more Like this articles, you can visit our Science category.

if you want to watch Movies or Tv Shows go to Dizi.BuradaBiliyorum.Com for forums sites go to Forum.BuradaBiliyorum.Com

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close

Please allow ads on our site

Please consider supporting us by disabling your ad blocker!